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Abstract. When investigating the total energy of an ensemble of electrons, it is not always 
necessary to calculate the one-electron states explicitly. The summation over all electron 
states may rather be replaced by a contour integration around the poles of the logarithmic 
derivative of the dispersion function. We consider an arbitrary array of metallic atoms, whose 
one-electron potential can be represented by a muffin-tin potential. We construct the one- 
electron states in the array according to the concepts of the KKR method. However, rather 
than using the Green function technique, we consider the addition theorem for the spherical 
Bessel functions and introduce the phase shift conditions at the atomic shells. This variation 
of the method simplifies the summation of the total electron energy. On shifting the contour 
of the above complex integration to imaginary energies, we can considerably reduce the 
dispersion function. The resulting final energy expression converges rapidly, and clearly 
exhibits all the required relationships between atomic potential, Fermi energy and particle 
separation. The procedure used here is strictly analogous to that applied in the theory of van 
der Waals attraction. This enables a consistent treatment of one-electron contributions and 
many-electron correlation effects. 

1. Introduction 

The theory of van der Waals attraction has recently been extended to include multipole 
interactions of arbitrary order (Langbein 1973). The theory requires three steps. The 
first step is to solve the Helmholtz equation for the electromagnetic eigenvectors in the 
presence of the single particles. Exact solutions of the Helmholtz equation are known 
in spherical, cylindrical and rectangular coordinates. The phase shifts of these eigen- 
vectors enforced by the particle under investigation are found from the Schrodinger 
equation and from the Maxwell equations in the case of molecules and macroscopic 
particles respectively. 

The second step of the theory is to construct the eigenvectors of the Helmholtz 
equation in an array of particles from linear combinations of the eigenvectors in the 
presence of the single particles. The ingoing electromagnetic modes at a particular 
particle are the outgoing modes caused by the remaining particles. Provided that the 
addition theorem of all modes is known, one obtains the allowed eigenfrequencies of 
the Helmholtz equation by considering the phase shift conditions for all particles. 

The van der Waals energy of the array under investigation is given by the quantum 
free energy of the allowed electromagnetic modes. This summation is greatly simplified 
if the state density integration technique introduced by van Kampen er a1 (1968) and a 
finite cavity are used (Richmond et a1 1971, Langbein 1973). By shifting the contour 
of the resulting frequency integration to the imaginary axis, a rapidly converging integral 
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is obtained. An exact evaluation of eigenfrequencies is not necessary. The integrand 
is generally split into scattering and structure factors, with the latter decreasing expo- 
nentially with increasing separation of the particles under consideration. 

The method described above for finding the allowed electromagnetic modes and the 
van der Waals energy in an array of particles is intimately related to investigations on 
one-electron orbitals and on the band energy by means of the Green function method. 
Consider an array of atoms, whose one-electron potential can be assumed spherically 
symmetric within some radius R and constant in the interspace (muffin-tin potential). 
It is then convenient to represent the electron orbitals in the interspace in terms of 
spherical Bessel functions and to account for scattering by the atoms by introducing 
the correct phase shifts. The application of this procedure to regular lattices was first 
reported by Korringa (1947) and by Kohn and Rostocker (1954) (KKR method). 

The Green function method for constructing one-electron orbitals is formally 
equivalent to the above investigations on the eigenvectors of the Helmholtz equation. 
We consider the scattering of free waves by an array of particles in both cases. This 
formal agreement suggests that the third step of the theory on van der Waals attraction, 
the state density integration technique, can also be used successfully in the theory of 
one-electron orbitals. In this case we obtain the total band energy. We are then able 
to calculate the one-electron and the many-electron contributions to the total free 
energy via equivalent methods. We shall demonstrate in the following that this is in 
fact possible. 

A first important difference between the two problems results from the fact that the 
energy integration in the one-electron case is along the straight line parallel to the 
imaginary axis which cuts the real axis at the Fermi energy EF. The wavenumber of the 
corresponding orbitals is not purely imaginary, but has a real part proportional to the 
Fermi wavenumber. This causes oscillations of the total band energy depending on 
whether the Fermi wavelength is consistent with the characteristic particle separation. 
A second important difference between the two problems is the vector character of the 
electromagnetic modes. A correlated motion of two electrons causes a mutual orienta- 
tion of orbitals (ie the multiplet contributions to the van der Waals energy depend on 
the angles enclosed by the interacting particles). In the one-electron case we consider 
only scalar wavefunctions (ie the multiplet contributions to the total band energy 
merely depend on the separation of the interacting atoms). 

The following investigations are strictly analogous to the procedure used in the 
van der Waals case. Missing steps of the calculation are included in Langbein (1973). 

2. Isolated atoms 

We are interested in metallic species, in which the potential acting on the conduction 
electrons can be represented by a muffin-tin potential. In this case solid state theory 
has at hand two well established methods for calculating one-electron energies : the 
augmented plane wave method and the Korringa, Kohn and Rostocker method. 
Within each atomic sphere, Schrodinger’s equation is solved exactly in terms of radial 
functions times spherical harmonics. In the interspace, these solutions are matched to 
free plane waves and to free spherical waves, respectively. We shall generally follow 
the KKR method, but introduce from the start the phase shifts caused by the single atoms 
rather than using the Green function technique. We are then able to consider regular 
lattices and disordered atomic arrays as well. 
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Let us consider a single atom at position 0, with potential V ( r )  within a sphere of 
radius R, and potential V = 0 in the exterior r > R. Using atomic units, we introduce 
Schrodinger's equation in the form 

( - * A + V ( r ) - E ) l s )  = 0. (1) 

Is> = fm(kr)Y;(s, CP), ( 2 )  

The spherical solutions of (1) in the exterior r > R are 

where fm(kr )  is a spherical Bessel function jm(kr) ,  y,(kr) of the first or the second kind, 
and s represents the triplet of quantum numbers 

s = (k, m, P). (3) 

E = fk2 .  (4) 

Is) = u m ( 4  Yk(3, cp) 

The radial wavenumber k is related to the energy by 

Within the sphere of radius R,  we satisfy Schrodinger's equation by 

( 5 )  

yielding 

If V ( r )  approaches the centre r = 0 not more rapidly than the Coulomb potential l/r,  
u,(r) can be represented by a Taylor series in r ,  which starts with the term rm. 

At the surface r = R the radial part of the total wavefunction Is) and its radial 
derivative have to be continuous. This boundary condition fixes the phase of the 
external solution fm(kr) .  Putting 

~ ~ ( k ,  m)al + ~ ~ ( k ,  m)a2 = 0 (8) 

We note that the spherical Bessel functions cannot be normalized in finite space due to 
their asymptotic behavior at large arguments, 

j , (kr) 1: (kr)- sin(kr - mn/2), y,(kr) 1: ( k r ) -  cos(kr - m7c/2). 

The spectrum of allowed k and E values is continuous. In order to obtain normalizable 
functions and a discrete energy spectrum, we have to introduce a finite cavity of radius S ,  
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at whose surface the wavefunction Is) vanishes. This yields the additional condition 

jm(kS)a ,  + ym(kS)az = 0 (11) 

which together with equation (8) determines a discrete k and E spectrum. 

3. Pair states 

Having found the possible eigenfunctions Is) in the presence of isolated atoms, we now 
ask for those in the presence of two identical atoms 1 and 2. We suggest that these 
eigenfunctions can be represented by a linear combination of atomic orbitals (LCAO). 
Using inversely oriented spherical coordinates at the two centres r l  and rz as shown in 
figure 1 ,  we put 

Figum 1. Inverted spherical coordinates. 

The eigenfunctions (12) have to be continuous at the surface of atom 1 and of atom 2, 
ie they have to satisfy boundary condition (8). This is achieved by shifting the Bessel 
functions centred at atom 2 to atom 1, and vice versa. The addition theorem for both 
kinds of Bessel functions is 

(14) 
(m + n - v) ! 

(m- p- v) ! (n  - p  - v ) ! ~ !  X (m  + n - p  -2v+ 9fm+" - zv (kr2  1 

and rZ1 = r2  - r I  . The expansion of orbitals centred at rz at the exterior position r1  
renders Bessel functions j , (kr)  of the first kind only. When applying boundary condition 
(8) at the surface of atom 1 we conveniently include these terms in effective amplitudes 
a l (m;  1). Satisfying boundary condition (8) at the surface of atom 2 is achieved in a 
similar manner by interchanging 1 and 2. 
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Since we are dealing with identical spherical atoms, we can use the invariance against 
reflection at the central plane for a classification of orbitals. They are even or odd on 
reflection, ie we may simplify the set of boundary conditions by using 

a,(m;2) = fa , (m;  l),  I = 1,2. (15) 

We finally obtain 

where Ukn;,(krZ1), I = 1,2 results from equation (14) by substituting Bessel functions 
Jm(kr2 ,) and ym(kr2 ,) of the first and second kind. 

Boundary conditions (16) yield M equations for the 2M coefficients a,(m; 1 )  and 
a2(m; l), M -+ CO. In order to obtain normalized orbitals and a discrete rather than a 
continuous energy spectrum, we may again use the cavity and require phase relations 
( 1  1). We find that each of the energy levels obtained in the presence of one atom splits 
up into two levels in the presence of two atoms. 

In contrast to the usual LCAO method, which starts with fixed atomic orbitals and 
determines the optimum coefficients from the variational principle, we solve Schro- 
dinger's equation rigorously by properly adapting the phase of the orbitals considered. 
This adaptability of external orbitals follows from the energy spectrum being con- 
tinuous. We are free to diagonalize the orbitals with respect to the total potential. 

4. Multiplet states 

The construction of orbitals in the presence of an arbitrary array of atoms is equivalent 
to that in the presence of two atoms. We use an LCAO method in which the phase of the 
atomic orbitals is adaptable to the total potential. Let the centre of a tomj  be rj. Since 
the connecting line ri-rj between atoms i and j is no longer a symmetry axis of the 
array, we have to extend the summation of atomic orbitals over the rotation wave- 
number p as well and obtain 

Satisfying boundary conditions (8) at the surface of any particular atom i requires 
translation of the orbitals centred at atoms j to atom i. This is generally possible by 
means of addition theorem (13). However, in an arbitrary array of atoms we cannot 
introduce inversely oriented spherical coordinates for every pair of atoms. We have to 
start with spherical coordinates in a standard direction n, rotate those at atom j in the 
direction of the connecting line vi-rj to atom i, apply addition theorem (13), and rotate 
the coordinates back into the standard direction n. This rotation of spherical coordinates 
mixes spherical harmonics of different order and equal degree. When rotating the 
coordinates at rj from the standard direction n to the connecting line n, = (vi - vj)/lri - rjl 
we find from figure 2, 
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n 

Figure 2. Rotation to n, = r i - r j .  

9, cp and 3, ,  cp, are the angles of an arbitrary vector r with respect to systems n and n, . 
The azimuths cp and cp, are measured relative to n x n, in both systems. 0 is the angle 
between directions n and n, . 

The coefficients C(m, p, v, e) can be represented by Jacobi polynomials of argument 
sin2(+@. We find 

(m  - v)! 
(m+ p)! I 

( -  1)"(2m - A)!(sin +e)2m-2L - p - '  

(m - p-A)! (m - v -A)! 2 ! 
C(m, p, V, e) = (COS + e ) p  + v- 

Using rotation theorem(l8)for the rotation ofcoordinates fromn ton, ,  addition theorem 
(13) for the translation from r j  to r i ,  and again rotation theorem (18) for the inverse 
rotation from n2 = -n, to n, we obtain 

where 

V(n, v ;  m, p ; r j i )  
(m  - A)! 

I (n+A)!  
= (2m + 1) eiv+C(n, v, i., e) ~ U;,,,(krji)C(m, - 2, p, n - @e- illd. (2 1) 

q5 is the azimuth of n x n1 in the standard system n, and rji  = r j -  r i .  
The transformation of all orbitals centred at atoms j to atom i yields numerous 

additional terms j,,,(klr -ril). Boundary condition (8) at the surface of atom i thus takes 
the form 

~ l ( k  m) a,(m,  p ; i) + 1 1 (22) 

with U,(n, v ;  m, p ;  rij)  resulting from equation (21) by substituting Bessel functions 
j , (krj i )  and ym(krji)  of the first and second kind. 

In the presence of two atoms we found the rotation to be a possible symmetry 
operation and a coupling of orbitals with equal rotational wavenumber p. In the 

adn, v ;j)ul(n, v ;  m, P ; r j i )  + ~ ~ ( k ,  m)a2(m, p ; i) = o i j # i  n,v 1 1 
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presence of a multiplet of atoms we find coupling of all orbitals m and p. Boundary 
conditions (22) provide NM(2M + 1)  equations for the 2NM(2M + 1) coefficients a,@, 
p ;  j ) ,  where N is the number of atoms, I = 1,2, and M CO. We again use the auxiliary 
boundary conditions caused by the cavity and find that each of the discrete levels 
obtained in the presence of an isolated atom splits up into a band. 

If the atomic array under investigation is a regular lattice, we learn from its invariance 
on translation by any lattice vector that we may classify the orbitals (17) according to 
Bloch's theorem. Putting 

we find that boundary conditions (22) no longer depend on the choice of the particular 
atom i, to which we transposed the orbitals. The secular determinant given by equations 
(22) and ( 1  1) now separates into a product of secular determinants, each corresponding 
to a particular wavenumber q. We recover the secular determinant which arises on 
application of the KKR method. 

5. Complex integration 

In the investigations described so far we did not ask whether the orbitals considered 
have low energy and show high electron density close to the centres r j ,  or whether they 
have high energy and show an increased electron density in the interspace. The reason 
is that we intend to calculate the total band energy rather than the individual electron 
orbitals. We shall not solve equation (22) explicitly for all amplitudes a,(m, p ; i), but 
are mainly interested In the effect of the level splitting on the total energy. 

Let us calculate the total free energy of the electrons in the atomic array under 
consideration relative to the case of infinite separation. By relating the free energy to 
this limit we are not implying that the muffin-tin potentials used can be separated to 
infinity. This reference point is rather suggested for the sake of mathematical simplicity. 
Occupation of the one-electron levels resulting from (22) according to the Fermi dis- 
tribution yields 

AE = a l l  2 levels [kTin[l+exp( -?)]-']:. 
In investigations into the theory of van der Waals attraction it was found convenient 
to integrate sums like (24) by means of complex integration techniques. The basic idea 
is to replace the state density entering (24) by an integral around the poles of the one- 
electron dispersion function. We introduce the analytical identity 

(25) 
d In G(E) c F(E, ) -  F(E,) = (274-l  dE F(E)dE 

zeros poles 

where E,,, runs over all zeros and E ,  runs over all poles of G(E) within the contour of 
integration. This contour, on the other hand, must not contain poles of F(E).  If G(E) is 
chosen such that its zeros and poles yield the one-electron energy levels for finite and 
infinite separation of the atoms, we can use (25) directly for summing (24). 
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This objective is achieved if 

F(E) = kTln[l+exp(  - 2 ) l - l  

and if G(E) equals the ratio of the secular determinants resulting from (22) and (1 1 )  for 
finite and infinite separation. The contour of integration has to enclose the real energy 
axis, but must exclude all poles 

E, = E, + 2ni(n + 3)kT 

of the Fermi distribution. This is true for the contour shown in figure 3. 

AE = ( 2 n i ) - l $ d E k T l n [ I + e x p [ - ~ ) ]  E-E, - 'd lnG(E)  dE 

Figure 3. Contour of integration. 

The integrals over the semicircles shown in figure 3 vanish with increasing radius lEl. 
We are left with the integration around the poles (27) of the Fermi distribution, and 
obtain by partial integration 

and 
+cc 

AE = kT InG(E,). 
n = - m  

We note from equation (30) that in investigations into the total band energy AE it is not 
necessary to solve the secular system (22), (11) explicitly. It is sufficient to know the 
ratio G(E)  of the secular determinants for finite and infinite separation at the poles E, 
of the Fermi distribution. 
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If the atomic array considered is a regular lattice we find from the splitting of G(E)  
into a product of secular determinants G(E,  q) 

+cc 

AE = ( 2 n y  1 dq k T  In G(E,, q )  
n = - c x  

where the integration over the wavenumber q covers one cell of the reciprocal lattice. 
A representation of the integrated density of states In G(E) by a secular determinant 

equivalent to equation (22)  and (11) was first reported by Lloyd (1967). Similar con- 
clusions have been drawn for arbitrary atomic arrays and regular lattices. The present 
procedure differs from Lloyd's treatment by explicitly using the addition theorem (13) 
for spherical Bessel functions and the phase shift condition (8). This makes it possible 
to increase the size of the cavity towards infinity and correspondingly to reduce the 
secular determinant. 

6. Band energies 

At the poles E ,  of the Fermi distribution we find k to be complex owing to the complexity 
of the energy. Putting 

k = k '+ ik"  (32) 

we obtain from (4) and (27)  

k' = { [ E g + ( 2 n k T ) 2 ( n + f ) 2 ] " 2 + E  F j112 

k" = { [ E : + ( 2 n k T ) 2 ( n + f ) 2 ] 1 1 2  -EF}lI2. 
(33) 

The real part k is equal to or larger than the Fermi wavenumber 
part approximately equals [2nk T(n + f ) ]  ' I 2 .  

tion (1 1). We may now turn directly to the limit of infinite cavities and find 

the imaginary 

Complex values of k entail an important simplification of the normalization condi- 

Substitution of (34) into (17)  and (22) only leaves spherical Bessel functions 

h!,!*2'(kr) = j ,(kr) f iy,(kr) 

of the third kind. These functions decrease exponentially for complex k and increasing r 
and thus simplify the addition theorem ( 1  3 )  considerably. Hence, 

exp( - k"r k ik'r) 
( f i)"'+"+ 

U i , ( k r )  = 

Um,(krji) and U(n,  v ;  m, p ; r j i )  decrease exponentially with increasing k" and with in- 
creasing separation r j i ;  this ensures rapid convergence of the sum over the poles E ,  
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in (30). Negative values of n entail the minus sign in (34) and the use of hg)(kr). We end 
up with the lower sign in (39 ,  ie the terms ( n + &  and - ( n + f )  render complex conjugate 
contributions. 

Since for infinite separation all terms V(n, v ;  m, p ;  rji) vanish, the ratio of secular 
determinants resulting from (22) for finite and infinite separation is equal to the deter- 
minant 

Equations (30) and (36) provide the total band energy of the array of particles considered. 
Summation over the poles En of the Fermi distribution is essentially an integration 
along that straight line parallel to the imaginary axis which cuts the real axis at the 
Fermi energy E , .  The main contribution to this integral results from low values of n, 
while increasing values of n entail an exponential decrease of the off-diagonal elements 
of G(E). Since for low values of n we find the off-diagonal elements of G(E)  to oscillate 
like exp(ik'rji), it is concluded that the total band energy AE also exhibits oscillations, 
depending on how the Fermi wavelength compares with the characteristic particle 
separation. 

When considering a regular lattice we may replace equation (36) by 

The oscillations of the total band energy of a given lattice structure with varying Fermi 
energy E ,  imply that changes in the Fermi energy may favour another lattice structure. 
Equations (31) to (37) enable us to investigate the relationships between Fermi energy, 
atomic pseudopotentials and lattice structure. The evaluation of the rapidly converging 
integral (31) relieves us from an exact calculation of the electron levels. 

7. Perturbation theory 

To get an idea of the results of an exact evaluation of equations (30), (31), let us consider 
a regular lattice and expand In G(E,  q )  up to terms quadratic in the scattering amplitudes. 
We find from (37) 

and 
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The linear terms in (39) vanish on summation over q over one reciprocal lattice cell. 
Of the quadratic terms, only those are left which satisfy rji  +rki = 0. Hence, 

As a result of expanding In G(E,  q)  up to quadratic terms, we are left with the pair con- 
tributions to the total interaction energy. Keeping the cubic terms implies inclusion of 
triplet contributions, and so on. 

The restriction to pair contributions enables a further simplification of equation (40). 
In this limit it is not necessary to introduce the standard coordinate system n at all 
atomsj. Instead, spherical coordinates directed towards the distinct atom i can be used. 
One recovers boundary conditions (16) for each pair orbital and the total band energy 
from a summation over all pairs. 

The corresponding elimination of the standard coordinate system n from energy 
expression (40) is achieved by summation over the rotational wavenumbers p and v.  
Substituting (21) into (40), we find the azimuths of n x ( r j - r i )  and n x ( r i - r j )  to cancel 
except for n. Then, using 

x (2n + l)U;:(krji). (42) 
The final expression (42) for the total band energy AE in a regular lattice is clearly split 
into phase shift and structure factors. The phase shift factor ~ ~ ( k ,  m) / (K , (k ,  m)f i~ , (k ,  m)) 
describes the form and strength of the potential. Its value distinguishes sharply between 
localized and non-localized orbitals. The structure factor Uin,(k, r j i )  tests the lattice 
structure. It checks whether those orbitals which experience large phase shifts at the 
individual atoms cancel or add up by multiple scattering. The critical wavelength is 
the Fermi wavelength 27r/(2EF)’”. 

8. Conclusions 

The present investigations into one-electron orbitals for arrays of atoms which exhibit 
muffin-tin potentials are basically equivalent to the KKR method. However, rather 
than applying the Green function technique, we prefer to use the addition theorem for the 
spherical Bessel function considered and to satisfy the phase shift conditions at the atomic 
shells. This variation of the method pays off when the total electron energy is calculated. 
We replace the summation over all electron states by a contour integration over the 
logarithmic derivative of the electron dispersion function. By shifting the contour 
of this integration to imaginary energies, we actually deal with exponentially decreasing 
orbitals only. This applies also to the addition theorem, and a rapid convergence of the 
final energy integration is found 
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If the array under investigation is a regular lattice, we obtain an additional splitting 
of the electron dispersion function according to  Bloch’s theorem. The resulting final 
energy expression is obviously made up of the phase shift of the electron orbitals at the 
single atoms and of the interference of the scattering amplitudes caused by different 
atoms. A large phase shift factor and an additive interference of multiple scattering terms 
are necessary for obtaining large contributions to the total band energy. If the symmetry 
of the orbitals with energies close to the Fermi energy does not fit to the lattice structure 
considered, another lattice structure may have lower energy. Expression (3 1) enables an 
exact treatment of this important relationship between atomic potential, Fermi energy 
and lattice structure. A shift of the contour of integration to imaginary energies causes a 
smooth variation of the integrand and a rapid convergence of the integral. This reduces 
the sensitivity of the total band energy to variations of the band structure close to the 
Brillouin zone boundaries, which critically enters earlier investigations (Heine 1969). 

Each explicit calculation into band energies and lattice structures on the basis of the 
present one-electron formalism may be supplemented by equivalent investigations into 
many-electron contributions. The above mathematical procedure was first used in 
investigations into these many-electron or van der Waals contributions. It is possible 
to attribute the correlation of different electrons to a photon exchange mechanism and 
to treat the average photon field using Maxwell’s equations. 

The resulting electric and magnetic modes between the atoms can be expressed in 
terms of spherical Bessel functions. By shifting the frequency integration over the average 
photon energy to the imaginary axis, we obtain final expressions analogous to equations 
(30) or (42). Since Bose rather than Fermi statistics is used, we do not find oscillations of 
the total correlation energy with increasing separation of the atoms. Since the fields 
considered are vectors rather than scalars, we find a dependence of multiplet contri- 
butions on the angles enclosed by the interaction diagram. 

We expect the one-electron contributions to the total lattice energy generally to 
dominate over the many-electron contributions. The latter are important if the atomic 
potential V ( r )  is weak, so that the phase shift experienced by the one-electron orbitals 
is small. A simultaneous treatment of one-electron and many-electron terms by the 
presented analogous methods covers the full scale from metallic muffin-tin lattices to 
van der Waals lattices like those of rare gases. 
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